HOME > Crosslight>  APSYS

APSYS

APSYS : Applications

APSYS는 반도체 레이저(이들은 LASTIP과 PICS3D로 시뮬레이션 된다)를 제외한 거의 모든 소자를 모델링하고 해석하는데 사용될 수 있습니다.

APSYS는 실리콘과 혼합물에 기반으로 한 다음의 소자를 모델링 할 수 있습니다.

 

• MOSFET's, BJT, JFET's을 포함한 SI Device

• MSM PD's, APD's, Waveguide PD's를 포함한 모든 종류의 photodetectors

• Solar cells

• SiGe, AlGaAs, InGaAsP, InGaN/AlGaN를 포함한 화합물의 HBT's

• High electron mobility transistors(HEMT's) 및 GaAs MESFET's

• Light emitting diodes(LED's)

• Resonant tunneling diodes(RTD's)

• Traveling wave semiconductor optical amplifiers(SOA's)

APSYS : Physical Models and Advanced Feature

APSYS는 완전 2D/3D 시뮬레이터로써 Photonic Waveguiding Device(Waveguide Photo-Detector와 같은)에 대한 Poisson’s Equation, Current Continuity Equation,

Carrier Energy Transport Equation, Quantum Mechanical Equation, Scalar Wave Equation을 풉니다.

 

APSYS는 다음과 같은 물리적 모델과 특징을 포함하고 있습니다.

• Hydrodynamic models for hot carriers with either field or energy dependent mobility.

• Heat transfer equations with flexible thermal boundary conditions and arbitrary temperature dependent parameters.

• Thermionic emission model for carrier transport across a graded or abrupt heterojunction, or a quantum well.

• Impact ionization model with either field or energy dependent impact ionization coefficients.

• Deep level trap and trap dynamic models are implemented to allow for the accurate model of semi-insulating and insulating materials.

• Interface states are modeled accurately to take into account the surface Fermi level pinning, interface recombination and interface fixed charges.

• Frenkel-Poole model of field induced impurity ionization is implemented for some new compound materials.

• Low-temperature simulation can be performed down to 77K and below.

• Guided optical modes (multimode model) may be solved for arbitary complex refractive index distribution.

• Quantum well subbands are solved using a k.p theory for strained or unstrained well/barrier.

• A large number of material models have been implemented. these include Silicon, AlGaAs, InGaAs, SiGe, InGaAsP, InGaN, AlGaN, ZnSe, InGaAlAs, InGaAlP and many others

•  new compound materials still being investigated.

• Flexible format for material parameter input enables the user to create his/her own material models using standard syntax of Fortran and C

• Finite element method (FEM) is used to treat arbitrary device geometry.

• A Cylindrical coordinate system may be used to model devices with cylindrical symmetry.

Evaluation

APSYS : Capabilities

APSYS는 기본적으로 다음과 같은 Output Data를 얻는데 사용될 수 있습니다.

• Current versus voltage (I-V) Curve

• 2D Potential, electric field and current distributions

• 2D Distributions of hot carrier temperature in the hydrodynamic model.

• Band diagrams under various bias conditions

• 2D distributions of lattice temperature for the heat transfer model

• Results of AC small signal analysis for any frequency range.

• Quantum well subband structure with valence mixing model for quantum devices.

• 2D distributions of occupancy and concentration of deep level traps in a semiconductor

• 2D optical field distribution for photonic devices such as photodetectors.

• Spontaneous emission spectrum as a function of current for LEDs.

이 프로그램의 평가 버전을 사용을 원하시는 분들은 당사로

연락을 주시기 바랍니다.